Bitcoin

R #1:Neo Breakthrough
LIk Ay

Bitcoin Whitepaper % it

R

Bitcoin: A Peer-to-Peer Electronic Cash System

Satosti Nakamoto "ERRP2PETBEDOEBIC LY | SRS ONMERE LIZ, FIH
wbiin o BRI OBEBERRA L T A L REDTREL R D25

www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online q%—:?ﬁ E]/‘j foa D 63: Bitcoin uﬁﬁ- DP2P Ezﬁqi %f % VD 77»: 'f‘% 2% EI/‘j 73? S 2 _}: NG

payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main o .
benefits are lost if a trusted third party is still required to prevent double-spending. Na pster & Hﬁ iﬁﬁ L/ T N E = 7 P2 Pi@ 1S 353 }Z) Jlf_fl;o
We propose a solution to the double-spending problem using a peer-to-peer network.

. : : : : 3 S - . =/ .)
The network timestamps transgctlons by hashing them into an ongoing cham.of 1 960@1& A1 jlé Lk-}K @Paul Baranz?))%\éié l/ 77:_ nﬁ%jz »On DlStrlbUted
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of . . » \

N — \\)

events witnessed, but proof that it came from the largest pool of CPU power. As Communications Networks W DRy NT—7 §7 iE D EF'
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The »Distributed” (éj\jéﬁi_fé]‘) c:‘é‘z ‘J:—’| .
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

.org/content/dam/rand/pubs/papers/2005/P2626.pdf

ps://www.rand

Hi L htt

I o —

—

1 % S i

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there 1s a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud 1s accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments
over a communications channel without a trusted party.

What is needed 1s an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of transactions. The
system 1is secure as long as honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.

"BEDA X —F v b EOEEGIIEE EBSN <. BRG] AL
BT AEHOE T A5 =5 D&REEEIKFEL T\ AE”

GRIBERIZTTPE L TR Y, ZHUXE R (19914F) @

FA DAL T —E AT,

SatoshilZTTPIZ F 7 A2 F 34 L 58y Offagsth 2465 L T2 D XL
) et E LT D,

(20014F D Nick Szabo D 3 I Z” Trusted Third Parties are Security Holes”
(TP EF =2V T4 A=V THD) LW omLrdv., EidslH
SCOFERARIL L 72 > TV D D TIHZRVDY,)

1% : Fi

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments
over a communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of trust,
allowing any two willing parties to transact directly with each other without the need for a trusted
third party. Transactions that are computationally impractical to reverse would protect sellers
from fraud, and routine escrow mechanisms could easily be implemented to protect buyers. In
this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed
timestamp server to generate computational proof of the chronological order of transactions. The
system is secure as long as honest nodes collectively control more CPU power than any
cooperating group of attacker nodes.

"B DIIEATIE RS BEPREERICE SV EE TG VAT AT

b, THIZXVEHOETLZFHE =%/ 2. FHEEOEZERS] 2

ARE & 7227

STTPL 2 DRI RS, FEMICKE SFIEERZ F 7 2 F L TW2D,
Trust-less’2 2 A7 MIRX 2N E 5 FHEERZ R 7 2 F LT D8
B2, "Trust-less72Trust” & RIL S 5,

ARG SCCIXEG | DR AT N T2 DWW T, BRI E SV EE %
T BDP2P A A D AH T — i L. ZEXIOBE O
RRERETH”

28 - oY g v

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the

next by digitally signing a hash of the previous transaction and the public key of the next owner " N = JAN = N PR N 5 o JAN
and adding these to the end of the coin. A payee can verify the signatures to verify the chain of % 1 /r e @Fﬁﬁ% &i\ Q JJ P]\ 7 /ﬂ— & v a s & /Jb\ @Fﬁﬁ%@ A
fl#EZ Ny Va2 b LB DICEFELZIT V. ThbaEFEE

Transaction Transaction Transaction

ownership.
Public Key Sublc Koy Public Key DREIZIMA D Z EIZE->T, ROFTABEIZAA kT 5”7

] |] | | A EOEFBAERTET 5 2 LT, BEOFHHEL TR
| | TX3”

Owner 1's Owner 2's Owner 3's
Private Key . Private Key | Private Key
The problem of course is the payee can't verify that one of the owners did not double-spend N . . X 3
the coin. A common solution is to introduce a trusted central authority, or mint, that checks every (_J‘Eﬁ.ﬁﬂﬁ% Eg /%—EF DTTPX TV 9% *ﬁ SELTCUNA 7= . Eﬁﬁzﬁ
transaction for double spending. After each transaction, the coin must be returned to the mint to
issue a new coin, and only coins issued directly from the mint are trusted not to be double-spent. i~ — . . H 73 X
The problem with this solution is that the fate of the entire money system depends on the Fﬂm VAT A T kj: —EBIZ{A A Pﬂﬁﬂiﬁ\ %‘fﬁﬁ‘ﬂ% T % T 5 o
company running the mint, with every transaction having to go through them, just like a bank.
We need a way for the payee to know that the previous owners did not sign any earlier
transactions. For our purposes, the earliest transaction is the one that counts, so we don't care
about later attempts to double-spend. The only way to confirm the absence of a transaction is to
be aware of all transactions. In the mint based model, the mint was aware of all transactions and
decided which arrived first. To accomplish this without a trusted party, transactions must be
publicly announced [1], and we need a system for participants to agree on a single history of the

order in which they were received. The payee needs proof that at the time of each transaction, the
majority of nodes agreed it was the first received.

28 - oY T g v

PRIETIE, a4 BT 2= DR IITER LT VANV EL L

T 5"
Transaction Transaction Transaction | J:%E iﬁb) ZE Iz 2% é j/bf VY Z))
Owner 1's Owner 2's Owner 3's - . . _
Public Key Public Key Public Key PF =N EENNDWYS [Tuy T a—2] Ol
: | 5 . . . N -
g o TWVWHERWRLENR, 22TV T =—"E T VX NVELD
l Hash __ Hash ' Hash |
| &nig,..

P
| Owner 1's
v Signature

Owner Q's
Signature

™ Owner 2's
_ Signature

| TUANEL U LTEEE [BrE4]

{?@5?] wm%‘ ZNHDEWT [EFEL] 1IXEOFEBMZ RFET 2 Bt
 Private Key Private Key | BT, FUSNBLITETELOPTH AR S FRE AV
AU XU 53 S

TV NVEBLT X o TREMRIEC I Z THRS AN LRIETE 5,

& &S

Owner 1's |
Private Key

[8 2 Y7050]
A B | | C HI$E : Private Key & Public KeylZ %1272 > T 5,
Transaction Transaction Transaction KT W7 23 AIZIZOwnerlDPublickey2y & U |
| %ﬁ Pubi Key M VUL T YT T g UBIZEH HOwnerlDEL

| Ay 1 ™ BEEL TV,

¢ | A o waer?.'s PrivateKeyl Tl DE4 % LT %5 . Ownerl®PublicKey
. Signature ‘ Signature

Owner 0's
Signature — \ - I — N ~ N
Lg P R \Z & AR LB LA R T VS v 3 VB
Owner2's | Owner 3's %75\ &b FO j/l/ foa v \o
Private Key Private Key . - . S
| | | | DT IHANBANF 22— L LTENDLILICLST
A DOREENERT D,

Owner 1's |
Private Key

CESCHAC R (BEAE)

T HEXHWEGRE (Bitcoin)

3% XA LAK T — N

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by taking a
hash of a block of items to be timestamped and widely publishing the hash, such as in a
newspaper or Usenet post [2-5]. The timestamp proves that the data must have existed at the
time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in
its hash, forming a chain, with each additional timestamp reinforcing the ones before it.

e L R

Block Block

Cion] [iom) []| | [ion] [fem] []

PR A INAR L TIIEIDEA LA T ED TNy Y 2ibE3h
TFz—r %L, ZNLUEICHLEZ A LAZ L TBINESN 5
ZETENURIOR A LAK T 5 L TN D

W S LinkingD Z & T, Bitcoin AR & & D H AT,
3% ClIBitcoin AR EFHED X A LA X T DEAE L TEY | 4%
LB CTTPEE L D A L AZ T IZOWTHA STV 5,

47 : Proof-of-Work

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-
of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts.
The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the
hash begins with a number of zero bits. The average work required is exponential in the number
of zero bits required and can be verified by executing a single hash.
For our timestamp network, we implement the proof-of-work by incrementing a nonce in the b L — /\ I) 2 Y o = o oy - -
block until a value is found that gives the block's hash the required zero bits. Once the CPU P 2P % %ﬂ% CE L/ 7:— JJ jé&j—fbj‘ 57 /r LA 57 s VH‘ 7 % 9% qu“ }Z) 71:‘ &5 bk"
effort has been expended to make it satisfy the proof-of-work, the block cannot be changed

without redoing the work. As later blocks are chained after it, the work to change the block &i . %ﬁﬁgﬁ%Usenet@*i foa ZE) DT &i 73? < . Adam Back?® Hashcash k

would include redoing all the blocks after it.

Block Block ﬁ*ﬁ O).PT"OOJO-O]L‘-T/VO]”'k\\/;< WAA %ﬁiﬂﬂ@— 6 L’Z‘%Zﬁ j%) %) ”

—P-i Prev Hash | .Noncel — D'{ Prev Hash Nonce
Tx | [][] [[]

The proof-of-work also solves the problem of determining representation in majority decision Usenet kj: ﬁj\ ﬁ&@%“% E(ﬁ? A :7: AN < N 1 9 8 0 EF—“ &: %%’f@] %f Fﬂ% ﬁél\ L/ f: o
making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone
able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority . . -
decision is represented by the longest chain, which has the greatest proof-of-work effort invested B ltC olin @P | 40]0, _f'O f; WO I"k 6j:H as hCClS h 7% Z/% % &L- L/ VC A }Z) o
in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the
fastest and outpace any competing chains. To modify a past block, an attacker would have to
redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the
work of the honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.
To compensate for increasing hardware speed and varying interest in running nodes over time,
the proof-of-work difficulty is determined by a moving average targeting an average number of
blocks per hour. If they're generated too fast, the difficulty increases.

47 : Proof-of-Work

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-
of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts.
The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the
hash begins with a number of zero bits. The average work required is exponential in the number
of zero bits required and can be verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the
block until a value is found that gives the block's hash the required zero bits. Once the CPU
effort has been expended to make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it, the work to change the block
would include redoing all the blocks after it.

Block Block

—P-i Prev Hash | Nonce' D'{ Prev Hash Nonce

The proof-of-work also solves the problem of determining representation in majority decision
making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone
able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority
decision is represented by the longest chain, which has the greatest proof-of-work effort invested
in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the
fastest and outpace any competing chains. To modify a past block, an attacker would have to
redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the
work of the honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time,
the proof-of-work difficulty is determined by a moving average targeting an average number of
blocks per hour. If they're generated too fast, the difficulty increases.

"Proof-of- Work > %1 & L CiE, $fE73SHA-256%\2 L 0/~ v
2 AL I, mAOnE sy RO ETCOTHE AMEZFE R T A5
cj?ﬁoj/l/z)»

B

TR S NS THEERIL, LER0OE Y M U AR
[ZEINT %5 —77, MEEIC DWW TIE—2D 1y ¥ 2 BHOFRIZ LY
AHETH B

R %~ ¥ 2 I AN TR OnE Yy b230E 7220 b D% ROl
5 Z EIIn AR E < RAVTFRRBEIEICEIE &0 N9 5 —J7 T,
Z DMz FREE S DITIXRICA S Tl Z N> ¥ 2 BRI AN D
ZIT TRV,

PRI L DI A DAL TRy NU—7 Tk, 78 vy ITHNDONy
2\ L CHhERERE Yy hOENRDNDET, 7y 7HNOT
v A DA% A ¥, Proof-of-Work% 3473 57

47 : Proof-of-Work

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-
of-work system similar to Adam Back's Hashcash [6], rather than newspaper or Usenet posts.
The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the
hash begins with a number of zero bits. The average work required is exponential in the number
of zero bits required and can be verified by executing a single hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in the
block until a value is found that gives the block's hash the required zero bits. Once the CPU
effort has been expended to make it satisfy the proof-of-work, the block cannot be changed
without redoing the work. As later blocks are chained after it, the work to change the block
would include redoing all the blocks after it.

Block Block

—P-i Prev Hash | Nonce' D'{ Prev Hash Nonce
o] [[] (=[]~]

The proof-of-work also solves the problem of determining representation in majority decision
making. If the majority were based on one-IP-address-one-vote, it could be subverted by anyone
able to allocate many IPs. Proof-of-work is essentially one-CPU-one-vote. The majority
decision is represented by the longest chain, which has the greatest proof-of-work effort invested
in it. If a majority of CPU power is controlled by honest nodes, the honest chain will grow the
fastest and outpace any competing chains. To modify a past block, an attacker would have to
redo the proof-of-work of the block and all blocks after it and then catch up with and surpass the
work of the honest nodes. We will show later that the probability of a slower attacker catching up
diminishes exponentially as subsequent blocks are added.

To compensate for increasing hardware speed and varying interest in running nodes over time,
the proof-of-work difficulty is determined by a moving average targeting an average number of
blocks per hour. If they're generated too fast, the difficulty increases.

"Proof-of-Work \Z81F 2 A N 13RI & L TICPUIETH D
"E e Proof-of Work Dt A& i bIEH SN TF = — U DiET
c—2 &R0, TNAEFOBREREICBITARFL D

PEH ORRBIZE D N— R = TR O E Ef7H 0) — RO
DDA D B % & L. Proof-of-Work OS5 FEI, 1W5H
HT20 DT vy 7 BERICLEBENEHICLI YV ED NS

58 : Xy NTU—7

5. Network

The steps to run the network are as follows:

1) New transactions are broadcast to all nodes.

2) Each node collects new transactions into a block.

3) Each node works on finding a difficult proof-of-work for its block.

4) When a node finds a proof-of-work, it broadcasts the block to all nodes.
Nodes accept the block only if all transactions in it are valid and not already spent.
Nodes express their acceptance of the block by working on creating the next block in the
chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on
extending it. If two nodes broadcast different versions of the next block simultaneously, some
nodes may receive one or the other first. In that case, they work on the first one they received,
but save the other branch in case it becomes longer. The tie will be broken when the next proof-
of-work is found and one branch becomes longer; the nodes that were working on the other
branch will then switch to the longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as they reach
many nodes, they will get into a block before long. Block broadcasts are also tolerant of dropped
messages. If a node does not receive a block, it will request it when it receives the next block and
realizes it missed one.

Xy T —7 OFEIFIEIZLLTOE D Th 5D,

DHF LT V7 v aidae/ — NIk Esns

2)& 7 —KPHLWR T oI arvazbbryay Z7IZBY ALd

3%) — RWZDT 1 v 75T 5 Proof-of-Work % i+ %

4) Proof-of-Work z Z.OF k%, / —RidthD7 vy 7 %
2/ — N7 — KXy A K T5

5%/ — KX, 2o7ayI7NOENT W T v a REDO
RIEEH DG D HIRFTEZAT 9

6) %/ — KN, KR L7270y 7Dy aZBRIONY V2
ELTHERL, Ro7a v OFERZ BT 5 Z & T,
7y 7 DRBERWAT D

) — RIIFIIRETF=—ZEL WSO LML, IEEZET A

6= : (L& T 4T

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new coin owned
by the creator of the block. This adds an incentive for nodes to support the network, and provides
a way to initially distribute coins into circulation, since there is no central authority to issue them.
The steady addition of a constant of amount of new coins is analogous to gold miners expending
resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction is
less than its input value, the difference is a transaction fee that is added to the incentive value of
the block containing the transaction. Once a predetermined number of coins have entered
circulation, the incentive can transition entirely to transaction fees and be completely inflation
free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose between using it
to defraud people by stealing back his payments, or using it to generate new coins. He ought to
find it more profitable to play by the rules, such rules that favour him with more new coins than
everyone else combined, than to undermine the system and the validity of his own wealth.

Ty JINOERPIIO ST o7 a s id, Brilnad U EERLIED D
ETHERIZ2 D THY, DO 37 vy JERFO LD L 725,
IS — DRy N =T e XFFT 54 8T 4 712705 L [RIRFIC
. 3 UERITT AT REEANANEDOT, BN U EFITTHHIEL
LTHHERET D,

—EEOH LA U EEERNTBML T FiL, SI855 @35 2358 L
TE&OMBEREL NI EL2FIEUL TWD, KUAT ATET 58RI
B3 CPUIFE] & BB) Th 5,

EBOFHIRE T WVICHEE LT AZH D,/ — R3PoWZ /21T 5 Z
EDHRBIED X A 2 7 L35 Z L Thistributed72 % v N U — V7 iEE %
MBI L T\ D,

3 NT— 7 PHEIE LT 5 729I2iF 7 — RA3PoW % RO el 2 B A
B 503, XHl & L TBitcoin® Hrl ERAEAER 2 BUSG9 5,

ZDA e T 4 TREFHT L o T, BitcoinlITTP & M B & L 72V VR Al AE
D & % Distributed * v b U — 7 fEGE A FZEL L TV D,

6= : (BT 47

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new coin owned
by the creator of the block. This adds an incentive for nodes to support the network, and provides
a way to initially distribute coins into circulation, since there is no central authority to issue them.
The steady addition of a constant of amount of new coins is analogous to gold miners expending
resources to add gold to circulation. In our case, it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction is
less than its input value, the difference is a transaction fee that is added to the incentive value of
the block containing the transaction. Once a predetermined number of coins have entered
circulation, the incentive can transition entirely to transaction fees and be completely inflation
free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose between using it
to defraud people by stealing back his payments, or using it to generate new coins. He ought to
find it more profitable to play by the rules, such rules that favour him with more new coins than
everyone else combined, than to undermine the system and the validity of his own wealth.

AT 4 TE P v a FEEHC Lo THESTE S, 7

AT A TIE — FREETH T 28 L R 01557
SHRTHEED®H L /) — FYEU EOBEER / — FOCPUNY —%
FEIZRH T THL 26, FHELED) — b aa 2l S
I D H— V[|5 TPOWH BTN A T 4 70
REL R DEKE

TE . T A4 AT ARN—ZADHIK]

7. Reclaiming Disk Space

Once the latest transaction in a coin is buried under enough blocks, the spent transactions before
it can be discarded to save disk space. To facilitate this without breaking the block's hash,
transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the block's hash.

Old blocks can then be compacted by stubbing off branches of the tree. The interior hashes do Ya A O)H% %ﬁ‘@ k= ‘/'H‘ g9 Y 753+§j\ VA d}&@ 7 o > QC% XIAENA

not need to be stored.
= | | . TNLHIO N T W7 g VRIERIET 4 AT« AR— REIRID T O
Block Header (Block Hash) Block Header (Block Hash)
L Prev Hashﬁa; [Am; " Prev HasLl [Nonce % "G\ % 6 o
_RootHash | Root Hash |
TRy I DNy aZBSPTICIOERZIT OO, bTr¥ I a il

ZTDT Ay T — NNy aDH G, =TV —ZHNT Ny

HashO Hash1 Hash2 Hash3 |Hash2‘ Ha§h3

—TT 5 A A vafbEhub,
() (W] (2] (]| | [me] L HEWT ey 23T T U FEEIR LT — by 2 DIk

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

> /\O - \ /I =k § /—'—Ai
A block header with no transactions would be about 80 bytes. If we suppose blocks are 17%@#“&2 J: < v A A0 %J/)&Z) =5 E‘ é j/l/ é ©
generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer systems
typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current growth of
1.2GB per year, storage should not be a problem even if the block headers must be kept in
memory.

3

b

8= - NI LW g DGR

8. Simplified Payment Verification ”%é@l?x v NDT—J) — I\%;%ﬁ LW &g S izzj:‘&l/\@*ﬁ

It is possible to verify payments without running a full network node. A user only needs to keep

a copy of the block headers of the longest proof-of-work chain, which he can get by querying = ol &g = »
network nodes until he's convinced he has the longest chain, and obtain the Merkle branch nJ—_E 617 H[:‘T j%) Z)
linking the transaction to the block it's timestamped in. He can't check the transaction for
himself, but by linking it to a place in the chain, he can see that a network node has accepted it,
and blocks added after it further confirm the network has accepted it.

S INETIEITIN) — ROFETH-T-0, 8SEITRET T4 T

Longest Proof-of-Work Chain]\ ‘(“‘ E) D) T ?E)]\ ? ‘/‘Hj & \T/ a y %%% El/\j c:*ﬁgﬂz‘(\‘ % é k l/ \ 5
Block Header Block Header Block Header
IWI Nonce | Prev Hash @ ' Prev Hash [Nonce I—b
Merkle Root | | Merkle Root [Merkle Root |

i Ch D,
EET oy 7N X —DHhEREL TRITIX,
Hash23.

. » > = ~ D
‘ \ Merkle Branch for Tx3 ~—JNT T TF BT AHIENAEETH D,
Hash3 |

A

Tx3
As such, the verification is reliable as long as honest nodes control the network, but is more SatOShi Gji $§§; 7 ? /f 77 :/]\ CC >, I/ A T :\'i\‘/\\\ 7%. i rj‘ T 35) D N 93%3% &j:

vulnerable if the network is overpowered by an attacker. While network nodes can verify

transactions for themselves, the simplified method can be fooled by an attacker's fabricated N f N

transactions for as long as the attacker can continue to overpower the network. One strategy to L/ T " d? v o

protect against this would be to accept alerts from network nodes when they detect an invalid

block, prompting the user's software to download the full block and alerted transactions to N =, — N

confirm the inconsistency. Businesses that receive frequent payments will probably still want to A j/) @ 6 Wa I Iet 7‘7)) $§‘ L= 2N 7 7 /r 7 v]\ k ;I 6 ©
run their own nodes for more independent security and quicker verification.

8= - NI LW g DS RGEE

Longest Proof-of-Work Chain

Block Header

—» Prev Hash

Nonce ‘

Merkle Root ‘

Block Header

F Prev Hash ‘

Block Header

‘ Merkle Root

E

HashO1 ‘

-

_Hashes |

Hash2

>

Prev Hash

Nonce

Merkle Root |

/ \ Merkle Branch for Tx3

9. Combining and Splitting Value

Although it would be possible to handle coins individually, it would be unwieldy to make a
separate transaction for every cent in a transfer. To allow value to be split and combined,
transactions contain multiple inputs and outputs. Normally there will be either a single input
from a larger previous transaction or multiple inputs combining smaller amounts, and at most two
outputs: one for the payment, and one returning the change, if any, back to the sender.

Transaction

] [oul—»
NP —

It should be noted that fan-out, where a transaction depends on several transactions, and those
transactions depend on many more, is not a problem here. There is never the need to extract a
complete standalone copy of a transaction's history.

af CEERNICHE D FEL AR TH LD, T a e ETE Y b
TOMEBNZHL D DITRAEZA 9,

MEDSHIREEZ FIRBICT D720, M7 7 v a AFEEDO A 7
Yy T U RNTy RREEND,

BEA Ty MIMIMEDO XY RERA N T P I aPHDIHDH D
D, INEED S D E B EDORETERO L DI S5,

—7J5. 77U N7y MIKHBWERO LD & b LEEER HUTE N Z SHA

WITIZiRIES 2 b DIl s g,

Bitcoin(3/NMIURLL 8T TTHR T Z & N AJHE,

ZHER T Y7 v a v DBEIZELZBDTHY . KIZHLH Y Input (G
ERTD = A G #HR) & Output GEIERZR D =1 FHR) MFET D

7O TH D,

10% : 77 A4 /33—

10. Privacy

The traditional banking model achieves a level of privacy by limiting access to information to the
parties involved and the trusted third party. The necessity to announce all transactions publicly
precludes this method, but privacy can still be maintained by breaking the flow of information in
another place: by keeping public keys anonymous. The public can see that someone is sending
an amount to someone else, but without information linking the transaction to anyone. This is
similar to the level of information released by stock exchanges, where the time and size of
individual trades, the "tape", is made public, but without telling who the parties were.

Traditional Privacy Model

s 5 Trusted -
Identities ‘ Transactions — Third Party Counterparty Public

New Privacy Model

|dentities ‘ Transactions | P{ Public

As an additional firewall, a new key pair should be used for each transaction to keep them
from being linked to a common owner. Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their inputs were owned by the same owner. The risk
is that if the owner of a key is revealed, linking could reveal other transactions that belonged to
the same owner.

LR ERITE T L Cl, [EHR~D 7 7 B A 2K S EHEOBIT 58 =
FHEBHICIRET AHE T, — LD T TANRN—FFEHL W5, 7

HEDBHEPICENET DAL U EEM LEDZABRSN SR, ZD T U
7 v a SERITEEIZS Y 7 STV, ZIUTRERIG I TAERIND b
D LFEIFEDFERL NV THY, ERID N7 Y72 a Ok, #ER X7
Ay A= RVEARSNTEE LTS, EDO RN T a v OYEEH
RIIRFH SN2V DTH D,

TAT T 4740870y 7Fz—r EDOT RUARMSL Z L3R, 1
X TTTANRN—2EmH TN D,

Public BlockchainTH 2Ll E, EOT KU ANL EDT RLANEELENE
N HBWVIRALTOWANEABR SN THAEN, ZOMEIZCE > TEDEAL

Bitcoin!Z K & NHFHRIRIR A 321 5 2 & 3720,

(TP —2>TH-oTHNET D &, ZOEDITED, TTPO BARFITEE | FT<e
7 VY b — REETDOn-ramp’2 &,)

10% : 77 A4 /N3 —

Traditional Privacy Model

: Trusted :

New Privacy Model

117 P RARL

11. Calculations

We consider the scenario of an attacker trying to generate an alternate chain faster than the honest
chain. Even if this is accomplished, it does not throw the system open to arbitrary changes, such
as creating value out of thin air or taking money that never belonged to the attacker. Nodes are
not going to accept an invalid transaction as payment, and honest nodes will never accept a block
containing them. An attacker can only try to change one of his own transactions to take back
money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a Binomial
Random Walk. The success event is the honest chain being extended by one block, increasing its
lead by +1, and the failure event 1s the attacker's chain being extended by one block, reducing the

gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a Gambler's
Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays potentially an
infinite number of trials to try to reach breakeven. We can calculate the probability he ever
reaches breakeven, or that an attacker ever catches up with the honest chain, as follows [8]:

p = probability an honest node finds the next block
g = probability the attacker finds the next block
g- = probability the attacker will ever catch up from z blocks behind

q{1 #ﬁﬂ
" \(g/p) ifp>gq

REEHNEEDTF = — LD HENA Y — R TEOF = — AR L L9

CRBDL YTV T EELET D,

RIZENDREII LT LTH, aAf U EEmNOARKR LD, WEEF N
A LEEORNIA U EZRELEY, EWVolt LI AT A% HHIZ
EETEX D0 Tldieu,

%) —RIZEH R N T a b REDO N T I a B G T B
> 7 i T oD TH S,

WEFRIIBFO N W7 v a Ui EESHR 2F T, D& 4
ZRVIRE D ETHEOALNARETH D, 7

Whitepaper TIZLL T, WEEZ D _HIXLWEZHXAL TR T T I =

L —g3 U &{To TV A,

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25

